Graphs of fixed order and size with maximal A_{α} -index

Ting-Chung Chang^{*} Bit-Shun Tam[†]

*Chihlee University of Technology, New Taipei City 220305, Taiwan, ROC

[†]Department of Mathematics, Tamkang University, New Taipei City 25137, Taiwan, ROC

Abstract

For any real number $\alpha \in [0, 1]$, by the A_{α} -matrix of a graph G we mean the matrix $A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G)$, where A(G) and D(G) are the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively. The largest eigenvalue of $A_{\alpha}(G)$ is called the A_{α} -index of G. We settle the problem of characterizing graphs which attain the maximum A_{α} -index over $\mathcal{G}(n, n + k)$, the class of graphs with n vertices and n + k edges, for $-1 \leq k \leq n - 3$ and $\frac{1}{2} \leq \alpha < 1$. The following result is obtained: for $-1 \leq k \leq n - 3$, when $\frac{1}{2} \leq \alpha < 1$, $H_{n,k}$ is the unique graph in $\mathcal{G}(n, n + k)$ that maximizes the A_{α} -index, except when (n, k) = (4, -1), (n, 2) or (7, 3) and $\alpha = \frac{1}{2}$, or (n, k) = (5, 1) and $\alpha \in [\frac{1}{2}, \frac{35 - \sqrt{409}}{24}]$. Our work completes the corresponding work of Chang and Tam (2010) and Zhai et al.(2022) for the special case $\alpha = \frac{1}{2}$. As a by-product, we provide a new proof for the known result that for any positive integer m and any real number $\alpha \in [\frac{1}{2}, 1)$, if $(m, \alpha) \neq (3, \frac{1}{2})$, then a graph maximizes the A_{α} -index over all graphs with m edges if and only if it is the union of $K_{1,m}$ with a (possibly empty) null graph; a graph maximizes the $A_{\frac{1}{2}}$ -index over all graphs with three edges if and only if it is the union of $K_{1,3}$ or K_3 with a (possibly empty) null graph. Some open questions are also posed.

Keywords: Maximal A_{α} -index problem; Maximal graph; Threshold graph; Neighborhood equivalence classes; Quasi-complete graphs; Quasi-stars

^{*}E-mail address:litpao@mail.chihlee.edu.tw

[†]E-mail address:bsm01@mail.tku.edu.tw